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Abstract: With the rise of intelligent manufacturing, prognostics and health management(PHM) has developed rapidly as an
important part of intelligent manufacturing.Existing deep learning-based PHM methods are data-dependent. However, sensor
data often contains noise and is redundant and high-dimensional, making it difficult for the PHM methods to learn a stable set
of model parameters, so the methods are likely to be wrong when disturbed. However, the factory hopes that the PHM methods
are robust enough to adapt to various perturbations, so it is necessary to perform robustness evaluation on the existing methods
in advance for easy deployment. Although the existing robust theoretical analysis methods for neural networks can obtain tight
robust boundaries, they consume a lot of computing resources and are difficult to scale to large neural networks. To slove
this problem, We design a benchmark for robustness analysis of large deep learning PHM models, in which we test the model
robustness using a variety of perturbations to simulate the actual production environment of the factory. Specifically, Gaussian
noise is used to test the robustness of the model to background noise; random mask is used to test the robustness of the model to
data loss. We hope that our robustness benchmark can serve as a reference for designing PHM models to improve the robustness
of factory PHM models.
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1 Introduction

In 2015, the Chinese government put forward the ”Made

in China 2025” plan, and intelligent manufacturing has grad-

ually emerged. Intelligent manufacturing covers machinery,

aviation, ships, automobiles, light industry, textiles, food,

electronics and other industries [1][2][3]. Different indus-

tries have different specific content for intelligent manufac-

turing. However, each industry need health management of

production equipment. Therefore, PHM is a worthy problem

to research, which can improve the production efficiency and

product quality and reduce the losses caused by equipment

failures. An important task in PHM is to predict the time

of equipment failure in time[9] and accurately determine the

type of equipment failure [12][13].

Due to the amazing performance of deep learning in vi-

sion and NLP, more and more researchers try to use deep

learning for PHM and have achieved excellent results[4][10].

Existing deep learning-based PHM methods are data-

dependent[6][8][12]. However, sensor data often contains

noise and is redundant and high-dimensional, making it dif-

ficult for the PHM model to learn a stable set of model pa-

rameters and to effectively resist perturbation. In actual fac-

tories, there are various perturbations such as background

noise, missing data, so the device health management model

is likely to be wrong in practical applications. As shown in

Figure 1, the original data point A is classified as blue class

by the model f . When a perturbation ε is applied, ‖ε‖p = ξ,

point A may drift to point B, that is, xB = xA + ε. When

it is at point B, the original data will be judged as yellow
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class by the model f , and the classification will be wrong.

To sum up, the existing PHM methods may be difficult to

adapt to the complex and changeable actual factory environ-

ment. However, factories always hope that the PHM method

is robust enough, so it is necessary to evaluate the robustness

of the PHM method in advance in order to actually deploy

the PHM method. While the existing robust theoretical anal-

ysis methods can obtain approximate boundaries of neural

networks, it is difficult to extend to large neural networks at

the cost of computational overhead[14][16][14].

Fig. 1: Neural network misclassifies due to perturbation

To solve this problem, we design a robustness test bench-

mark for PHM. Considering the complex actual production

scenarios of factory, we use a variety of disturbances to sim-

ulate the actual production environment of the factory to test

the robustness of the model. Specifically, Gaussian noise is

used to simulate the background noise generated by factors

such as mutual interference of machine vibrations to test the

robustness of the PHM method to background noise; random

mask is used to simulate the absence of sensor signals to test
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the robustness of the PHM method to data loss.

All in all, the main contributions of the proposed method

are summarized as follows:

1) By simulating the complex real scenarios of the factory,

we propose a simple and feasible robustness test benchmark

for the PHM method to achieve the robustness evaluation.

2)The proposed method is evaluated on CWRU dataset

and proven effective.

2 Related Work

Recetly, more and more researchers are paying attention

to the application of deep learning in PHM. We will mainly

introduce the work related to fault diagnosis.

2.1 Fault diagnosis
Existing deep learning-based methods can be divided into

time domain, frequency domain and time-frequency domain

according to the information utilization of sensor data.

The time-domain methods use the raw signal of the sen-

sor as the input of the neural network, which has the advan-

tage of being simple and intuitive without excessive prepro-

cessing. Zhuang et al. [11] proposes an MS-DCNN fault

diagnosis model, which takes the one-dimensional sensor

raw signal as the input of the network, and extracts infor-

mation at different scales through multi-scale convolutional

layers. Guo et al. [7] tries to stack one-dimensional sen-

sor signals into a two-dimensional matrix. Li et al. [5]

proposes a fault diagnosis model of MRF-GCN, which uses

graph to model sensor time-domain signals, constructs an

adjacency matrix based on signal similarity, and adaptively

learns the relationship between signals. The above meth-

ods achieve good results, but they all ignore the frequency

domain information of the original data. Abnormal informa-

tion usually has a high frequency in the frequency domain

compared to normal information. Janssens et al.[12] uses

discrete Fourier transform for data processing of raw sig-

nals, and fault diagnosis through convolutional neural net-

works. Although the frequency domain information is con-

sidered, the corresponding time domain information is ig-

nored. Therefore, Xu et al. [13] uses continuous wavelet

transform to convert the time-domain vibration signal into

a two-dimensional grayscale image, considering both time-

domain information and frequency-domain information, and

used a LeNet-5-based CNN model for fault diagnosis.

However, these methods all rely on the quality of the

data, and the data often contains noise, redundancy and high-

dimensional feature, making it difficult for the model to learn

stable parameters. So when there is perturbation, the model

may be wrong.

3 Preliminary

Given training set Xtrain, test set Xtest, PHM model f ,

data x ∈ Xtest, perturbation ε, where ‖ε‖p = ξ
Definition 1: For classification problems, suppose the data

f(x) = yi, yi is the class label of x. If there is perturbation

ε such that x′ = x + ε, f(x′) = yj ,yj �= yi , then the PHM

model f is said to have a perturbation ε with p-norm ξ at

data point x is not robust.

Definition 2: Considering that the test set Xtest contains

multiple data, the robustness of the test set Xtest to the per-

turbation ε with p-norm ξ can be described as: when the

Fig. 2: The overall framework of our approach

perturbation with p-norm ξ is introduced, the PHM model f
does not change the classification result of any data in the

test set Xtest.

Problem: For the model f , the robust perturbation ε with

the p-norm of minimum ξ is difficult to solve. Therefore, we

hope to obtain the accuracy of the corresponding model for

the classification problem under the premise of the p-norm

of the given perturbation ε .

4 Method

Figure 2 presents the overall framework of our robustness

testing method proposed in this paper. It consists of two pro-

cesses, the first is to train the model using the original train-

ing data to obtain good health management performance,

and the next is to inject different perturbations to simulate

the actual production environment of the factory when vali-

dating the test set to estimate the performance of the model

in the real environment. Specifically, Gaussian noise GN is

used to simulate the background noise of the vibration signal

to test the robustness of the model to background noise; ran-

dom mask is used to simulate the absence of vibration signal

to test the robustness of the model to data missing.

4.1 Background Noise
There are various types of sensors in the factory, and the

background noise always affects the quality of the data col-

lected by the sensors. Taking the acceleration sensor as an

example, it mainly collects vibration signals, and factors

such as mutual vibration between machines and tiny vibra-

tions caused by workers moving and transporting vehicles

constitute the background noise of the vibration signals.

PG(z) =
1

σ
√
2π

e−
(z−μ)2

2σ2 (1)

Where μ and σ2 are the parameters of the distribution,

which are the expectation and variance of the Gaussian

distribution, respectively.The equation 1 is abbreviated as

N(μ, σ2).
Here we use Gaussian noise GN to simulate the factory

background noise. Gaussian noise GN follows a Gaussian

distribution N(μ, σ2) and is formulated as follows:

GN ∼ N(μ, σ2) (2)
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For robustness testing, we fuse Gaussian noise with the

original test data to reduce the signal-to-noise ratio of the

test data, which is formulated as follows:

x′ = NG + x (3)

4.2 Data Missing
Considering that data loss may occur in the actual data

collection process, we design a random mask NM . It is a

code of length N , and each bit is 0 or 1 with a certain proba-

bility. For the robustness test, we fuse the random mask NM

with the original test data, and randomly change any bit of

the test data to 0, the formula is as follows:

x′ = NM ⊗ x (4)

5 Experiment

5.1 Dataset
CWRU Bearing Fault Dataset: We use the Case Western

Reserve University (CWRU)[20] bearing dataset for fault di-

agnosis robustness testing. Three different fault sizes are

used, namely 7 mils, 14 mils and 21 mils. Each failure size

contains three failures, namely inner raceway failure, outer

ring failure and ball failure. Including normal types, there

are a total of 10 health classes. Each class has four operating

conditions: 0 hp/1797 rpm, 1 hp/1772 rpm, 2 hp/1750 rpm

and 3 hp/1730 rpm. The sampling frequency of the samples

is 12 kHZ. The data is split using the sliding window method

with a window length of 1024 and a step size of 256. 70%

of the data is used as the training set and 30% of the data is

used as the test set.

5.2 Metric
We use four networks for fault diagnosis, namely

LeNet[19], AlexNet[18], ResNet18[17] and Resnet50.

For fault diagnosis, the evaluation metric is the accuracy

rate, which is defined as the ratio of the number of correct

classifications to the total number of classifications.

5.3 Result
Table 1 shows the classification accuracy of the four fault

diagnosis models under different disturbances. Here, the

Gaussian noise is set to have a mean of 0 and a variance

of 0.3. The mask is random 10% of the data bits become

0. It can be seen that when the data is clean, each model

can show incredible accuracy. With just a little perturbation,

model performance drops significantly, proving our work is

very necessary, in factories where such models have the po-

tential to cause major production accidents.

Table 1: Accuracy of fault diagnosis under different pertur-

bations
LeNet AlexNet ResNet18 Resnet50

Clean Data 99.3% 98.2% 98.6% 98.8%

Gaussian Noise 33.9% 37.5% 16.6% 13.0%

Mask Code 94.8% 97.1% 98.2% 87.4%

Comparing Gaussian noise and mask code, we can find

that the model is more resistant to the disturbance caused by

data missing, because although some data is missing, there

are still other data that can provide fault information for the

model, and the overall timing structure of data is not cor-

rupted. The Gaussian noise leads to a significant drop in

model performance, indicating that background noise will

drown out useful information, destroy the correlation be-

tween time series data, and make it difficult for the model

to extract features that are useful for classification.

From Figure 3, it can be seen that under the Gaussian

noise N(0, 0.5), the performance of the model’s fault diag-

nosis is significantly reduced, and the classification is rela-

tively concentrated. This is because the model uses Gaus-

sian noise as the diagnosis object. The fault information is

not extracted, that is, Gaussian noise drowns out the original

sensor signal.

Figure 5 is accuracy heat maps drawn by superimposing

the mean range [0, 0.5] and the variance range [0, 10] Gaus-

sian noise. The yellow area is the area where the model is

insensitive to Gaussian noise, and the model can still perform

fault diagnosis. Note that the model is much more sensitive

to variance than the mean, and only when the variance of the

Gaussian noise is small, the model performance drops less.

This is because all the time series data are approximately su-

perimposed by a constant, although the numerical changes

have a little impact on the model performance, the correla-

tion between the data is still preserved.

As shown in Figure 6, the effect of mask perturbation on

model performance is intuitive. As the proportion of missing

data increases, the performance of the model gradually de-

clines. This is because the information contained in the time

series data is gradually lost, and the time series structure is

gradually destroyed, so the model performance gradually de-

clines.

And ResNet50 appears upturned at the end of the curve

in Figure 6, this is because the model has collapsed and the

classification is concentrated. As shown in Figure 4, when

the data loss is serious, the fault diagnosis ability of the

model is close to collapse, and the test samples are mostly di-

vided into a class. When the data is missing 90%, it happens

to divide a certain number of test samples into the normal

class. The normal class accounts for the highest proportion

of the samples, but good results are obtained.

6 Conclusion

In this paper, we propose a robustness test benchmark for

PHM, simulate the production environment to test the per-

formance of the model under various conditions, and achieve

the evaluation of model robustness. Experiments show that

our method is effective and it is necessary to test the robust-

ness of the model.
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